Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Frontiers of Engineering Management ; : 1-19, 2023.
Article in English | EuropePMC | ID: covidwho-2253489

ABSTRACT

Indoor environment has significant impacts on human health as people spend 90% of their time indoors. The COVID-19 pandemic and the increased public health awareness have further elevated the urgency for cultivating and maintaining a healthy indoor environment. The advancement in emerging digital twin technologies including building information modeling (BIM), Internet of Things (IoT), data analytics, and smart control have led to new opportunities for building design and operation. Despite the numerous studies on developing methods for creating digital twins and enabling new functionalities and services in smart building management, very few have focused on the health of indoor environment. There is a critical need for understanding and envisaging how digital twin paradigms can be geared towards healthy indoor environment. Therefore, this study reviews the techniques for developing digital twins and discusses how the techniques can be customized to contribute to public health. Specifically, the current applications of BIM, IoT sensing, data analytics, and smart building control technologies for building digital twins are reviewed, and the knowledge gaps and limitations are discussed to guide future research for improving environmental and occupant health. Moreover, this paper elaborates a vision for future research on integrated digital twins for a healthy indoor environment with special considerations of the above four emerging techniques and issues. This review contributes to the body of knowledge by advocating for the consideration of health in digital twin modeling and smart building services and presenting the research roadmap for digital twin-enabled healthy indoor environment.

2.
Journal of Building Engineering ; : 103533, 2021.
Article in English | ScienceDirect | ID: covidwho-1487855

ABSTRACT

Practices such as improved ventilation and air filtration are being considered by schools to reduce the transmission of Severe Acute Respiratory Syndrome Coronavirus 2 that causes the pandemic of coronavirus disease 2019 (COVID-19). Improved ventilation may significantly increase the energy cost of heating, ventilation, and air conditioning (HVAC), exacerbating financial challenges schools face amidst the worst pandemic in decades. This study evaluated HVAC energy costs for reducing COVID-19 airborne infection risks in 111,485 public and private schools in the U.S. to support decision-making. The average annual HVAC energy cost to maintain the infection risk below 1% for the schools in the U.S. is estimated at $20.1 per square meter or $308.4 per capita with improved ventilation and air filtration, where the private schools have higher costs than the public schools on average. The cost could be reduced by adopting partial online learning. It is also found that additional cost to control infection risk with increased ventilation and air filtration is significantly lower for PK-5 schools than that for middle and high schools in all states, indicating the possibility of remaining in-person instruction for PK-5 schools with necessary governmental assistance. Analyses of school HVAC energy cost to reduce airborne infection risk under different intervention scenarios provide important operational guidelines, financial implications, and policy insights for schools, community stakeholders, and policymakers to keep schools safe during the ongoing pandemic and improve preparedness for epidemics projected in the future.

3.
Sustain Cities Soc ; 74: 103188, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1406340

ABSTRACT

The potential airborne transmission of SARS-CoV-2 has triggered concerns as schools continue to reopen and resume in-person instruction during the current COVID-19 pandemic. It is critical to understand the risks of airborne SARS-CoV-2 transmission under different epidemiological scenarios and operation strategies for schools to make informed decisions to mitigate infection risk. Through scenario-based analysis, this study estimates the airborne infection risk of SARS-CoV-2 in 111,485 U.S. public and private schools and evaluates the impacts of different intervention strategies, including increased ventilation, air filtration, and hybrid learning. Schools in more than 90% of counties exhibit infection risk of higher than 1%, indicating the significance of implementing intervention strategies. Among the considered strategies, air filtration is found to be most effective: the school average infection risk when applying MERV 13 is over 30% less than the risk levels correlating with the use of increased ventilation and hybrid learning strategies, respectively. For most schools, it is necessary to adopt combined intervention strategies to ensure the infection risk below 1%. The results provide insights into airborne infection risk in schools under various scenarios and may guide schools and policymakers in developing effective operations strategies to maintain environmental health.

4.
Build Environ ; 187: 107394, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-898532

ABSTRACT

Microbial pathogen transmission within built environments is a main public health concern. The pandemic of coronavirus disease 2019 (COVID-19) adds to the urgency of developing effective means to reduce pathogen transmission in mass-gathering public buildings such as schools, hospitals, and airports. To inform occupants and guide facility managers to prevent and respond to infectious disease outbreaks, this study proposed a framework to assess room-level outbreak risks in buildings by modeling built environment characteristics, occupancy information, and pathogen transmission. Building information modeling (BIM) is exploited to automatically retrieve building parameters and possible occupant interactions that are relevant to pathogen transmission. The extracted information is fed into an environment pathogen transmission model to derive the basic reproduction numbers for different pathogens, which serve as proxies of outbreak potentials in rooms. A web-based system is developed to provide timely information regarding outbreak risks to occupants and facility managers. The efficacy of the proposed method was demonstrated by a case study, in which building characteristics, occupancy schedules, pathogen parameters, as well as hygiene and cleaning practices are considered for outbreak risk assessment. This study contributes to the body of knowledge by computationally integrating building, occupant, and pathogen information modeling for infectious disease outbreak assessment, and communicating actionable information for built environment management.

SELECTION OF CITATIONS
SEARCH DETAIL